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ABSTRACT

We show that if one uses the invariant form of the Boltzmann-Shannon con-

tinuous entropy, it is possible to obtain the generalized Pareto-Tsallis density

function, using an appropriate ”prior” measure mq(x) and a ”Boltzman con-

straint” which formally is equivalent to the Tsallis q-average constraint on the

random variable X. We derive the Tsallis prior function and study its scaling

asymptotic behavior. When the entropic index q tends to 1, mq(x) tends to 1

for all values of x as this should be.

PACS: 0590+m, 02.50.-r, O5.45.Df

1 Introduction

Most of the probability distributions used in natural, biological, social and eco-

nomic sciences can be formally derived by maximizing the entropy with adequate

constraints (maxS principle)[1].

According to the maxS principle, given some partial information about a

random variable i.e. the knowledge of related macroscopic measurable quantities

(macroscopic observables), one should choose for it the probability distribution

that is consistent with that information but has otherwise a maximum uncer-

tainty. In usual thermodynamics, the temperature is a macroscopic observable

and the distribution functions are exponentials.

Quite generally, one maximizes the Shannon-Boltzmann (S-B) entropy:

SB = −

∫ b

a

p(x) ln p(x)dx (1)
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subject to the conditions
∫ b

a

p(x)dx = 1,

∫ b

a

gi(x)p(x)dx =< gi(x) >, i = 1, 2, .. (2)

Both limits aand b may be finite or infinite. The functions gi(x)whose expecta-

tion value have been usually considered [1] as constraints to build probability

distributions are of the type

x, x2, xn, (x− < x >)2, | x |, | x− < x >|, lnx, (lnx)2, ln(1 ± x), exp(−x).... (3)

The maximum entropy probability density function (mepdf) depends on the

choice of the limits of integration a and b and the functions gi(x) whose expec-

tation values are prescribed.

One constructs the Lagrangian

L = −

∫ b

a

p(x) ln(p(x)dx (4)

−λ0(

∫ b

a

p(x)dx − 1)−
∑

i

λi(

∫ b

a

gi(x)p(x)dx− < gi(x) >

and differentiating with respect to f(x), one finds easily :

p(x) = C exp[−
∑

i

λigi(x)] (5)

The factor C is a normalization constant and the Lagrange parameters λi are

determined by using the constraints (eqs.2,3).When this cannot be achieved sim-

ply, the parameters λi are defined by the constraints. Most distributions derived

from the constraints given in eq.3 posses finite second moments and hence be-

long to the domain of attraction of the normal distributions. Those which belong

to the domain of attraction of the Lėvy (stable) distribution i.e. the Cauchy

and the Pareto distributions are obtained with a characteristic Lėvy tail param-

eter µ ≥ 1 indicating that only a finite expectation value (first moment) can be

defined. In particular using the simplest constraint∫
∞

0

xp(x)dx =< x > (6)

one obtains the density

p(x) = (1/ < x >) exp(−x/ < x >) (7)

which is the basis of Boltzmann thermostatistics if we identify x with the energy

E and define the temperature as T = k < E > where k is the Boltzmann

constant.
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2 Shortcomings of the S max principle

This traditional utilization of maxS principle has two main shortcomings.

The first one is that it cannot provides distributions belonging to the basin of

attraction of Levy distributions when the Levy heavy tail index µ < 1.i.e.distributions

corresponding to the statistial properties of non-averaging systems. Applied to

thermostatistics this means that it cannot be applied to nonextensive systems.

The second, pointed out repeatedly for decades by Jaynes[2][3], is that the

continuous form of the Boltzman-Shannon entropy is not invariant and should

be written more correctly as

S = −

∫
p(x) ln

p(x)

m(x)
dx (8)

in order to have a distribution invariant under parameter change. The function

m(x) is called the measure function. It is proportional to the limiting density

of discrete points. So it is the entropy, relative to some measure, which has to

be maximized.

Under a change of variable the function p(x) and m(x) transform in the same

way. If we maximize the entropy∫
p(x) ln

p(x)

m(x)
dx (9)

with the constraint ∫
g(x)p(x)dx = 1 (10)

The Lagrange multiplier method yields for p(x) the solution

p(x) = Cm(x)e−λg(x) (11)

The meaning of the measure function has been discussed at large by Jaynes

[2][3]. If there is no constraint maximizing the entropy yields p(x) = Cm(x)

where C is a normalizing constant. It is the distribution representing ”complete

ignorance”

3 Tsallis entropy

The most popular method to circumvent the first difficulty is based on a gen-

eralization of the Boltzmann entropy known as the Tsallis entropy[4][6]. This

method has been used with some success to deal with thermostatistic proper-

ties of slightly chaotic and nonergodic systems presenting memory effects and

long-range interactions.
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The Tsallis entropy is appropriate for system weakly chaotic power law mix-

ing when the Liapounov exponent is tending to zero and the relevant phase

space instead of being translational invariant (as in the Gibbs-Boltzmann case)

is scale invariant (fractal or more generally multifractal). We start from the

Tsallis nonextensive entropy

ST = −

∫
∞

0

pq
q(x) lnq pq(x)dx (12)

subject to the conditions
∫

∞

0

pq(x)dx = 1,

∫
∞

0

gq,i (x)p̃q(x)dx =< gq,i(x) >q, i = 1, 2, . . (13)

p̃q(x) =
pq

q(x)∫ b

a pq
q(x)dx

fq(x) =
p̃
1/q
q (x)∫ b

a p̃
1/q
q (x)dx

(14)

where the functions p̃q(x)(x) are the so-called ”escort” probability [6][5] . Gen-

eralizing what has been done with the standard S-B entropy (eqs.1-4), one can

write the constraints using the generalized q-exponential and q-logarithm func-

tions (q-constraints).

lnq x ≡
x1−q − 1

1 − q
expq(x) ≡ [1 + (1 − q)x]

1

1−q with lnq(expq(x)) = x

(15)

construct the corresponding Lagrangian and differentiating with respect to

p̃q(x) one finds [8]

pq(x) = Cq expq[−
∑

i

λq,igq,i(x)] (16)

p̃q(x) = C̃qpq(x)q (17)

The factors Cq are normalization constants and the Lagrange parameters λq,i

are determined by using the q-constraints. If one chooses the simplest constraint

with gq,i(x) = x defining the so- called q-average

Eq(x) =

∫
∞

0

x)p̃q(x)(x)dx =< x >q (18)

we get the generalized Pareto density supported on the positive half-line and

defined in the range 1 < q < 2.

p̃q(x) = (1/(2 − q) < x >q)[1 +
q − 1

2 − q

x

< x >q
]−

q

q−1 (19)

pq(x) = (1/ < x >q)[1 +
q − 1

2 − q

x

< x >q
]−

1

q−1 (20)
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and the corresponding Pareto-Tsallis distribution supported on the positive half-

line.

Pq(x) = 1 − [1 +
q − 1

2 − q

x

< x >q
]−

q

q−1 (21)

Defining the tail index µ = 2−q
q−1 , the distribution Pq(x) has an asymptotic

algebraic behavior

pq(x− > ∞)− > (1/µ) x−µ−1 (22)

Pq(x− > ∞)− > (1/µ) x−µ (23)

The n-th moments E[xn] of the random variable of the random variable X dis-

tributed according to eq.() exists only if n<µ (hence for 1 < q < 2+n
n+1 ).Therefore

Pq(x) belongs to the domain of attraction of the completely assymmetric stable

Lévy distribution. These properties and their consequences are widely discussed

in the literature.[5][7]

4 Determination of the prior for nonextensive

entropy

We can now come to the second shortcoming. The meaning of the measure

function has been discussed at large by Jaynes[2][3]. In the continuous case

even before we can apply maximum entropy principle, we must deal with the

problem of complete ignorance (for instance all microstates are equiprobable

in Boltzmann-Gibbs thermodynamic). For ”fractal” systems ignorance means

scaling invariance. It is therefore legitimate to ask what is the scale invariant

measure function or ”prior” which should be used to obtain the Generalized

Pareto-Tsallis density function if we would use the correct invariant form

SI = −

∫
∞

0

pq(x) ln
pq(x)

mq(x)
dx (24)

and use the constraint

< g(x) >=

∫
g(x)pq(x)dx (25)

Starting from the identity

SI = −

∫
pq(x) ln

pq(x)

m(x)
dx = ST =

∫
(pq(x))q lnq p(x)dx (26)

we derive the following relations:

ln pq(x) − lnm(x) = (pq(x))q−1 lnq pq(x) (27)
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ST = SB+ < lnm(x) >

or defining the ”Kullback-Leibler divergence” KL(p(x), g(x))

KL(pq(x), m(x)) = S(pq, m) − SB (28)

the quantity

S(pq, m) = − < lnm(x) > (29)

being known as ”cross-entropy”. The cross entropy is always greater than or

equal to the entropy, this shows that the Kullback-Leibler (KL) divergence is

always nonnegative and furthermore KL(p(x), p(x)) is zero. We obtain easily

pq(x)

mq(x)
= exp[(p(x))q−1 lnq pq(x)] (30)

We use the definition of lnq (eq.15), and obtain

mq(x) = pq(x) exp(lnq(
1

pq(x)
) (31)

If we choose for pq(x) the generalized Pareto-Tsallis function with reduced vari-

able ( < x >q= 1)

pq(x) = (1 +
q − 1

2 − q
x)−

1

q−1 (32)

We obtain easily the following results:

lnq(
1

pq(x)
) =

x

(2 − q) + (q − 1)x
(33)

mq(x) = expq(−
1

2 − q
x) exp(

x

(2 − q) + (q − 1)x
) (34)

If we define the q−Laplace transform in he sense of Lenzi et al. [9] :

Lq[f(t)](s) ≡ Fq(s) ≡

∫
∞

0

f(t)[expq(−t)]sdt (35)

we have
∫

∞

0

mq(x)dx = Fq(1) =

∫
∞

0

f(t)[expq(−t)]dt with f(t) =
t

1 + (q − 1)t
(36)

In term of the Levy tail index

µ =
2 − q

q − 1
(37)
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we can write

mq(x) = (1 +
1

µ
x)−µ−1) exp(

(µ + 1)x

µ + x
) (38)

This function obeys the following asymptotic behaviors

mq(x− > ∞)− > exp(1 + µ)
1

µ
x−µ−1 (39)

mq(x− > 0) = 1 − (µ + 1)(x/µ)2 + ... (40)

The prior function mq(x) has the scaling invariant asymptotic form of a com-

pletely asymmetric Lévy stable distribution. In Fig.1 and Fig.2 we represent

the function for two value of q (1.2 and 1.8) coresponding to values of the tail

index µ (4 and 0.25) and for the physical range 1 < q < 2.

5 Maximization of the invariant entropy

If we maximize the entropy

SI =

∫
pq(x) ln

pq(x)

m(x)
dx (41)

with the constraints
∫

∞

0

pq(x)dx = 1

∫
∞

0

g(x)pq(x)dx = 1 (42)

The Lagrange multiplier method yields for p(x) the solution

pq(x) = Cmq(x)e−λg(x) (43)

We will recover the Tsallis function

pq(x) = (1 +
q − 1

2 − q
x)−

1

q−1 (44)

if

x

(2 − q) + (q − 1)x
= (1/(2 − q))

x

1 + (q − 1)/(2 − q)x
= λg(x) (45)

i.e.

λ = 1 , (< g(x) >= 1) and g(x) = (1/(2 − q))
x

1 + (q − 1)/(2 − q)x
(46)

In that case the constraint (equation ) reads
∫

g(x)pq(x)dx = (1/(2 − q))

∫
x(1 +

q − 1

2 − q
x)−

q

q−1 dx = 1 (47)
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which is the Tsallis q-average constraint on the variable x since

p̃q(x) = (1/(2 − q))(1 +
q − 1

2 − q
x)−

q

q−1 (48)

is the Tsallis escort probability (eq.19). Therefore the use of the correct non

invariant form

SI = −

∫
∞

0

pq(x) ln
pq(x)

mq(x)
dx (49)

with the ”prior”

mq(x) = expq(−
1

2 − q
x) exp(

x

(2 − q) + (q − 1)x
) (50)

and the constraint

∫
g(x)pq(x)dx = 1 (51)

with

g(x) = (1/(2 − q))
x

1 + (q − 1)/(2 − q)x
(52)

yields the generalized Pareto density

pq(x) = (1 +
q − 1

2 − q
x)−

1

q−1 (53)

and the ”Boltzmann” constraints (eq.) is equivalent to the Tsallis constraints

< x >q= 1.

6 Conclusions

We have shown that maximizing the invariant continuous Boltzmann-Shannon

entropy with appropriate prior measure and constraint provides the Generalized

Pareto Tsallis distribution which is the basis of the nonextensive thermostatistic.

This point of view opens paths for deriving superstatistics directly from the

”universal” invariant Boltzmann-Shannon entropy.
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